Skip to contents

Queue function calls on the cluster

Usage

Q(
  fun,
  ...,
  const = list(),
  export = list(),
  pkgs = c(),
  seed = 128965,
  memory = NULL,
  template = list(),
  n_jobs = NULL,
  job_size = NULL,
  split_array_by = -1,
  rettype = "list",
  fail_on_error = TRUE,
  workers = NULL,
  log_worker = FALSE,
  chunk_size = NA,
  timeout = Inf,
  max_calls_worker = Inf,
  verbose = TRUE
)

Arguments

fun

A function to call

...

Objects to be iterated in each function call

const

A list of constant arguments passed to each function call

export

List of objects to be exported to the worker

pkgs

Character vector of packages to load on the worker

seed

A seed to set for each function call

memory

Short for `template=list(memory=value)`

template

A named list of values to fill in the scheduler template

n_jobs

The number of jobs to submit; upper limit of jobs if job_size is given as well

job_size

The number of function calls per job

split_array_by

The dimension number to split any arrays in `...`; default: last

rettype

Return type of function call (vector type or 'list')

fail_on_error

If an error occurs on the workers, continue or fail?

workers

Optional instance of QSys representing a worker pool

log_worker

Write a log file for each worker

chunk_size

Number of function calls to chunk together defaults to 100 chunks per worker or max. 10 kb per chunk

timeout

Maximum time in seconds to wait for worker (default: Inf)

max_calls_worker

Maxmimum number of chunks that will be sent to one worker

verbose

Print status messages and progress bar (default: TRUE)

Value

A list of whatever `fun` returned

Examples

if (FALSE) { # \dontrun{
# Run a simple multiplication for numbers 1 to 3 on a worker node
fx = function(x) x * 2
Q(fx, x=1:3, n_jobs=1)
# list(2,4,6)

# Run a mutate() call in dplyr on a worker node
iris %>%
    mutate(area = Q(`*`, e1=Sepal.Length, e2=Sepal.Width, n_jobs=1))
# iris with an additional column 'area'
} # }